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Comment on the Run Time Statistics in Models of 
Growth in Disordered Media 
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We point out an error in the equations for the evolution of the run time 
statistics given in a paper by Marsili and give the correct expression. Moreover, 
we discuss the annealing approximation which is implicit in the transformation. 
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In a recent paper ,  ~ hereafter  referred to as paper  I, Marsili  p roposed  a 
t ransformat ion  of  a quenched process into an annealed one, a long lines 
originally p roposed  in ref. 2. The  class of  models  considered are based on 
a dynamics  which is determined by the extreme of  a quenched r a n d o m  field 
ei, where i labels a site in a d dimensional  lattice. These models  include 
invasion percolat ion as well as m a n y  other  models  recently in t roduced ~3~. 
The purpose  of this c o m m e n t  is to correct  an error  in the equat ions  for the 
evolution of  the run t ime stat is t ics  (hereafter RTS),  which is the effective 
probabi l i ty  distr ibution of  disorder  variables  at a t ime t, and to clarify the 
nature  of  the approx ima t ion  involved. Briefly (for a more  complete  account  
of the t rans format ion  see pape r  I), the process evolves according to the 
following rule: at the generic t ime t, the dynamics  has produced  a cluster 
of occupied sites rg,. The  next site to be occupied lies on a proper ly  defined 
per imeter  0rg, of  rg,. This site is chosen to be the one with the smallest value 
of the disorder  var iable  e~ for i e 0cg,. Since the disorder  is assigned initially 
to each site ~ once the initial cluster rg 0 is specified, the process is deter- 
ministic, The  t rans format ion  of  this process to a stochastic one, which has 
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clear advantages which are discussed in I, goes as follows: Let r;., be the 
time elapsed since site i first entered the perimeter set: i~Ocg,, with 
t ' =  t -  ri., ..... t and ir 0%, for t ' <  t - r ; . , .  Imagine that the effective dis- 
tribution of the variables eg on sites in 0cg, is given. This distribution, which 
depends on ri. ,, is the RTS: p~,. , . , (x)dx=P{x<~ei<x+dx }. This allows 
us to compute the probability that site i will be selected [ see Eq. ( 1 ) in I ]: 

1 

lt~., =fo p~.,(x) ~ [1 --Pk.,(x)] "k''-a*.~ (I) 
k 

where n~,, is the number of sites with r~., = r and P, . , (x) = I~" p,. ,(y) dy. 
Indeed Eq. (I) yields the probability of the event {e~<~ejYjeO%} in which 
e~ is the smallest variable in 0cg,. With probability fi, t, site i with r~, , =  
will be the smallest. This implies that its probability distribution is not 
pc. ,(x), but rather 

l 
m,(x[~)= p~.,(x) I-~[1-Pk. , (x)]  ''k''-ak'~ (2) 

lX~. t k 

[Eq. (3) in I],  which accounts, conditionally, for the fact that •i ~ Ej for all 
jeOcg,. Again the rules of conditional probability can be used to find the 
RTS Pk+ 1. ,+ ~(x) at the following time step: 

i~ m,(y[f)  d Pk+"'+'(x)=Pk"(X) 1 --~--P~-. ,~,) y (3) 

Note that this differs from the analogous equation (4) in paper I, which 
should be replaced by the above one. Before sketching the derivation of Eq. 
(3) we note that (i) Pk+ t. ,+ ~(x) is properly normalized, as can be explicitly 
checked by using Eqs. (1) and (2); (ii) pk+l.,+i(x) is linear in pk.,(x), 
whereas in eq. (4) of paper I Pk.,(X) appeared twice in the equation for 
Pk + l.,+ l(X) [explicitly in front of M,(x[~) and again in M,(x['~) itself, the 
denominator in the integral of Eq. (3) explicitly cancels this second 
occurrence] (iii) the substitution of Eq. (4) in paper I with Eq. (3) does not 
affect the results derived in Sections 3-5 of paper I, even though it modifies 
slightly the numerical results found in direct calculation based on the RTS 
and real-space methods for critical phenomena, as in refs. 4 and 5. 

In order to derive Eq. (3), let us call Aj(t; x) the event { x <~ ej < x + dx 
at time t} and Bi(t) the event {ei<ejYj~Ocg,}. Therefore 

p~j.,+,. ,+ ~(x) dx = P{ Aj(t; x) lB,(t) } (4) 
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where rj,,+~ = r j . ,+  1. Here P{A [B} denoted the probability of event A 
conditional to the occurrence of B, and is given by P { A I B } =  
P{AB} /P{B} .  In addition, AB is the event in which both A and B occur, 
and in our case it is easy to find that 

P{Aj(t;  x) Bi(t)} 

=dx  p~j.,(x) dy pe.,(y) l--I [1--Pk.,(y)]"k''--a~"'--~k'~J.' (5) 
k 

Indeed the first factor is just the probability of Aj(t; x). The integral runs 
only up to x because y---e; < ej. = x at time t (ei is the smallest variable in 
0cg,). The product inside the integral expresses that also all the other 
variables in 0cg, must be smaller than ei = Y. Note that the site i (for which 
rl. , =  f) and the site j must be excluded from this product, which is the 
reason for the exponent nk,, - 6~, ~ - ~k. rj. ,. Therefore this is the correct for- 
mula that expresses the probability of the simultaneous occurrence of the 
events Aj(t; x) and B~(t). Finally we note that P{Bi(t)} =p~., as given in 
Eq. (1). Combining this with Equations (4) and (5) and using Eq. (2), one 
easily arrives at Eq. (3). 

We note, moreover, that the transformation from the quenched 
dynamics to the annealed one is not exact. The approximation lies in 
the assumption of independence between the variables in 0cg,. The 
event of selection of the smallest random variables modifies the 
statistics of the remaining variables as a whole. In other words, one 
can define an exact transformation only by dealing with the full joint 
probability distribution p,: (Xl ..... xN,) of the variables in 0cg,. It can be 
easily checked that, even if p,(x~ ..... xu,) =I]~p~.,(x~) at time t, after 
one step of evolution the joint probability distribution is no longer a 
product over single-variable distributions. In Eq. (3) the other Variables 
in 0cg, are integrated over, which means that this equation holds for 
the marginal distributions of one variable. In other words, the condi- 
tion e j<  min(e~) is applied independently to each variable to update its 
distribution. 

Note that the variables ei were initially chosen as independent. It is, 
however, welt known that if one orders N variables e~ in ascending order 
epi< epi+~, where pi is a permutation of the indices 1 ..... N, the variables epi 
are no longer independent. In extreme dynamics the correlation arises for 
exactly the same reason. There the order relations are established between 
variables which are selected and variables which remain on the perimeter 
set. 
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In order to illustrate this point and to find a rough estimate of the 
correlation, take n independent uniform variables e,. and impose on them 
the condition e i >~eo for all i = 1 ..... n [o r  equivalently mini(ei)> %]. Then 
the distribution of the e~ is no longer that of independent variables. The 
(marginal) distribution of one of the variables is 

p, (x )  = n + l  [ 1 - ( 1 - x ) " ]  
I I  

while that of a pair of variables is 

n+ I {O (y - - x ) [ l - - ( l  - - x ) " - ' ]  + O ( x - - y ) [ l - - ( l  - y ) " - ' ] }  p,_(x, y) = 

With these we can calculate the averages (e~) and (elej)  for i # j ,  and 
therefore evaluate the correlation 

n + l  1 
(e,~j) - (e,)(~j) = 4(17 + 2)2(17 + 3) ~ ~ -  (6) 

This suggests that if one writes 

p,(x, . . . . .  x,,)= U p,.,(x,)+ ]-[ . '0+ P / j ,  t t ~  i ,  " " " 

i = 1  iv~j 

then the second term is negligible for large n. In other words the first term 
in the above equation produces a contribution of order I/1l 2 to the second 
term at each step. Taking n = N ,  suggests that the correlation between 
variables is negligible in the asymptotic limit N, -* oo. A more careful study 
is necessary, however, to settle the question in a definite way. 

The interpretation of the stochastic process resulting from the applica- 
tion of the RTS is therefore the following: at each time step, every variable 
ei is extracted from its distribution p;. ,(x), then the minimum variable is 
found, and finally the distribution of the variables is updated. In the 
quenched process, instead, the variables are fixed from the beginning. The 
update rule of the RTS is, however, such that the statistical properties of 
the variable which is extracted at time t are the same as those of a variable 
which would have witnessed the actual quenched process. This annealing 
approximation to the quenched process includes only time correlations 
between variables, whereas space correlations, i.e., correlations between 
variables e.; at the same time, are neglected. 
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